Failụ si na nke mbu(3,918 × 2,052 pixel, ívù akwukwo orunótu: 2.78 MB, MIME nke: image/jpeg)
Failụ a si na Wikimedia Commons,enwekwara ike iji ya eme ihe na arụmarụ ọzọ. Nkọwa na ihuakwukwọ nkọwa failụ eziri na okpuru.
Mmẹkụwátá
NkówáLasers and supermassive black holes UGC 6093.jpg
English: This image, captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3), shows a galaxy named UGC 6093. As can be easily seen, UGC 6093 is something known as a barred spiral galaxy — it has beautiful arms that swirl outwards from a bar slicing through the galaxy’s centre. It is classified as an active galaxy, which means that it hosts an active galactic nucleus, or AGN: a compact region at a galaxy’s centre within which material is dragged towards a supermassive black hole. As this black hole devours the surrounding matter it emits intense radiation, causing it to shine brightly.
But UGC 6093 is more exotic still. The galaxy essentially acts as a giant astronomical laser that spews out light at microwave, not visible, wavelengths — this type of object is dubbed a megamaser (maser being the term for a microwave laser). Megamasers such as UGC 6093 can be some 100 million times brighter than masers found in galaxies like the Milky Way.
Hubble’s WFC3 observes light spanning a range wavelengths — from the near-infrared, through the visible range, to the near-ultraviolet. It has two channels that detect and process different light, allowing astronomers to study a remarkable range of astrophysical phenomena; for example, the UV-visible channel can study galaxies undergoing massive star formation, while the near-infrared channel can study redshifted light from galaxies in the distant Universe. Such multi-band imaging makes Hubble invaluable in studying megamaser galaxies, as it is able to untangle their intriguing complexity.
ESA/Hubble images, videos and web texts are released by the ESA under the Creative Commons Attribution 4.0 International license and may on a non-exclusive basis be reproduced without fee provided they are clearly and visibly credited. Detailed conditions are below; see the ESA copyright statement for full information. For images created by NASA or on the hubblesite.org website, or for ESA/Hubble images on the esahubble.org site before 2009, use the {{PD-Hubble}} tag.
Conditions:
The full image or footage credit must be presented in a clear and readable manner to all users, with the wording unaltered (for example: "ESA/Hubble"). Web texts should be credited to ESA/Hubble (except when used by media). The credit should not be hidden or disassociated from the image footage. Links should be active if the credit is online. See the usage rights Q&A section on the ESA copyright page for guidance.
ESA/Hubble materials may not be used to state or imply the endorsement by ESA/Hubble or any ESA/Hubble employee of a commercial product or service.
ESA/Hubble requests a copy of the product sent to them to be indexed in their archive.
If an image shows an identifiable person, using that image for commercial purposes may infringe that person's right of privacy, and separate permission should be obtained from the individual.
If images or visuals are changed significantly from the original work (apart from resizing, cropping), we suggest that the changes are mentioned after the credit line. For example "Original image by ESA/Hubble (M. Kornmesser), warping and recolouring by NN".
Notes:
Note that this general permission does not extend to the use of ESA/Hubble's logo, which shall remain protected and may not be used or reproduced without prior and individual written consent of ESA/Hubble.
Also note that music, scientific papers and code on the esahubble.org site are not released under this license and can not be used for non-ESA/Hubble products.
By reproducing ESA/Hubble material, in part or in full, the user acknowledges the terms on which such use is permitted.
í-kpó-áhà – Ị ga-enyerịrị ugo kwesịrị ekwesị, nye njikọ na ikikere ahụ, ma gosikwa ma emere mgbanwe. Ị nwere ike ime ya n'ụzọ ezi uche ọ bụla, mana ọ bụghị n'ụzọ ọ bụla na-egosi na onye nyere ikikere kwadoro gị maọbụ ojiji gị.
https://creativecommons.org/licenses/by/4.0CC BY 4.0 Creative Commons Attribution 4.0 truetrue
Nkowapụta
Tinye nkọwa otu ahịrị ihe faịlụ a na-anochi anya ya.
Usòrò á nwèrè ụmà nke ozor, ọ ga dí na ȯ byàrà shí nsé nhuunuche nsónùsòrò mà ihe njè nsónùsòrò nke kéré mà nké tonyèrè ya na nsónùsòrò.
Ȯ bụ nà usòrò à gabnwere shí òtù ȯ di nà mgbe mbu, ótù ụmà àgághị è zí ya.
Credit/Provider
ESA/Hubble & NASA
Source
ESA/Hubble
Short title
Lasers and supermassive black holes
Íshí nhuunuche
This image, captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3), shows a galaxy named UGC 6093. As can be easily seen, UGC 6093 is something known as a barred spiral galaxy — it has beautiful arms that swirl outwards from a bar slicing through the galaxy’s centre. It is classified as an active galaxy, which means that it hosts an active galactic nucleus, or AGN: a compact region at a galaxy’s centre within which material is dragged towards a supermassive black hole. As this black hole devours the surrounding matter it emits intense radiation, causing it to shine brightly. But UGC 6093 is more exotic still. The galaxy essentially acts as a giant astronomical laser that spews out light at microwave, not visible, wavelengths — this type of object is dubbed a megamaser (maser being the term for a microwave laser). Megamasers such as UGC 6093 can be some 100 million times brighter than masers found in galaxies like the Milky Way. Hubble’s WFC3 observes light spanning a range wavelengths — from the near-infrared, through the visible range, to the near-ultraviolet. It has two channels that detect and process different light, allowing astronomers to study a remarkable range of astrophysical phenomena; for example, the UV-visible channel can study galaxies undergoing massive star formation, while the near-infrared channel can study redshifted light from galaxies in the distant Universe. Such multi-band imaging makes Hubble invaluable in studying megamaser galaxies, as it is able to untangle their intriguing complexity.
Usage terms
Creative Commons Attribution 4.0 International License