Jump to content

Ihe ndabere nke microwave cosmic

Shí Wikipedia, njikotá édémédé nke onyobulạ

 

Okirikiri igwe na-ahụ maka mbara igwe (CMB, CMBR) bụ radieshon microwave na-ejupụta oghere niile dị na mbara igwe a na-ahụ anya.  Ọ bụ ihe fọdụrụ na-enye ihe dị mkpa isi iyi nke data na primordial eluigwe na ala.[1] Site na teliskop anya ọkọlọtọ, oghere dị n'azụ n'etiti kpakpando na ụyọkọ kpakpando fọrọ nke nta ka ọ gbaa ọchịchịrị kpamkpam.  Otú ọ dị, teliskop redio na-enwe mmetụta nke ọma na-achọpụta ìhè na-esighị ike n'azụ nke fọrọ nke nta ka ọ bụrụ otu na enweghị njikọ na kpakpando ọ bụla, ụyọkọ kpakpando, ma ọ bụ ihe ọzọ.  Ihe na-egbuke egbuke kacha sie ike na mpaghara microwave nke ụdịdị redio dị iche iche.  Nchọpụta ihe mberede nke CMB na 1965 site n'aka ndị na-enyocha mbara igwe redio America bụ Arno Penzias na Robert Wilson bụ njedebe nke ọrụ malitere na 1940s.[2][3]

CMB bụ ihe akaebe dị ịrịba ama nke echiche Big Bang maka mmalite nke eluigwe na ala.  N'ụdị mbara igwe nke Big Bang, n'oge ndị mbụ, eluigwe na ụwa juputara na igwe anaghị agba nchara nke nnukwu plasma na-ekpo ọkụ nke ụmụ irighiri ihe dị n'okpuru ala.  Ka eluigwe na ụwa na-agbasawanye, plasma a jụrụ oyi ruo n'ókè ebe protons na electrons jikọtara ọnụ na-emepụta atom na-anọpụ iche nke na-abụkarị hydrogen.  N'adịghị ka plasma, atom ndị a enweghị ike ịgbasasị thermal radieshon site Thomson mgbasa, ya mere eluigwe na ala ghọrọ uzo.[1]  N'ịbụ nke a maara dị ka oge nchigharịgharị, ihe omume a na-emekọ ihe na-ewepụta foton iji mee njem n'enweghị ihe ọ bụla site na mbara igwe - mgbe ụfọdụ a na-akpọ radieshon relic.  Otú ọ dị, foton amụbabeghị ike n'ihi redshift nke mbara igwe jikọtara ya na mgbasawanye nke eluigwe na ala.  N'elu ikposa ikpeazụ na-ezo aka na shei dị n'ebe dị anya na mbara igwe ka a na-anata foton ugbu a nke ewepụtara na mbụ n'oge a na-edozi ya..[4]

CMB adịchaghị mma na otu, na-egosi anisotropy dara ada nke ndị nchọpụta nwere mmetụta nwere ike ịdepụta ya.  Nnwale ndị gbadoro ụkwụ na ala na oghere dị ka COBE na WMAP ka ejirila tụọ inhomogeneities okpomọkụ ndị a.  A na-ekpebi nhazi anisotropy site na mmekọrịta dị iche iche nke ihe na photons ruo n'ókè nke nchacha, nke na-eme ka e nwee àgwà lumpy e ji mara nke na-adịgasị iche na ọnụ ọgụgụ angular.  Nkesa nke anisotropy n'ofe mbara igwe nwere ihe ndị na-eme ugboro ugboro nke nwere ike ịnọchite anya site na ike dị iche iche na-egosipụta usoro nke elu na ndagwurugwu.  Ọnụ ọgụgụ kasị elu nke ụdịdị dị iche iche na-ejide ozi dị mkpa gbasara njirimara anụ ahụ nke eluigwe na ụwa mbụ: ọnụ ọgụgụ nke mbụ na-ekpebi curvature nke eluigwe na ala, ebe ọnụ ọgụgụ nke abụọ na nke atọ na-akọwa njupụta nke ihe nkịtị na ihe a na-akpọ ọchịchịrị, n'otu n'otu.  Ịwepụta nkọwa dị mma na data CMB nwere ike bụrụ ihe ịma aka, ebe ọ bụ na e megharịala ihe na-esi na ya pụta site na njirimara ndị dị n'ihu dị ka ụyọkọ ụyọkọ kpakpando.

Mkpa nke ịtụle n'ụzọ ziri ezi

[dezie | dezie ebe o si]

Ọnụ ọgụgụ ziri ezi nke CMB dị oke mkpa na mbara igwe, ebe ọ bụ na ihe nlereanya ọ bụla a tụrụ anya nke eluigwe na ala ga-akọwarịrị radieshon a.  CMB nwere ụdị ahụ dị iche iche na-ekpo ọkụ na okpomọkụ nke 2.72548±0.00057 K.[1]  Igwe ọkụ dị n'ụdị dEν/dν na-arị elu na 160.23 GHz, n'ụdị ngwa ndakwa nri nke ugboro ugboro, dabara na ike foton nke ihe dịka 6.626×10−4 eV.  N'aka nke ọzọ, ọ bụrụ na a kọwapụtara ihe na-egbukepụ egbukepụ dị ka dEλ/dλ, mgbe ahụ ogologo ikuku kacha elu bụ 1.063 mm (282 GHz, 1.168×10−3 eV photons).  Ọkụ na-egbuke egbuke fọrọ nke nta ka ọ bụrụ otu n'akụkụ niile, mana obere mgbanwe ndị fọdụrụnụ na-egosi usoro a kapịrị ọnụ, dịka nke a na-atụ anya ya maka gas na-ekpo ọkụ na-ekesa n'ụzọ ziri ezi nke gbasaa ruo ugbu a nha nke eluigwe na ala.  Karịsịa, ihe na-egbuke egbuke n'akụkụ dị iche iche nke nlele na mbara igwe nwere obere anisotropies, ma ọ bụ ihe na-adịghị mma, nke dịgasị iche iche na mpaghara a na-enyocha.  A tụrụ ha n'ụzọ zuru ezu, ma kwekọọ n'ihe a ga-atụ anya ya ma ọ bụrụ na obere mgbanwe okpomọkụ, nke ngbanwe nke ihe dị n'ime obere oghere na-emepụta, gbasaa ruo n'ókè nke eluigwe na ala a na-ahụ anya nke anyị na-ahụ taa.  Nke a bụ ebe ọmụmụ ihe na-arụsi ọrụ ike, ndị ọkà mmụta sayensị na-achọ ma data ka mma (dịka ọmụmaatụ, ụgbọ elu Planck) na nkọwa ka mma nke ọnọdụ mbụ nke mgbasawanye.  Ọ bụ ezie na ọtụtụ usoro dị iche iche nwere ike iwepụta ụdị ụdịdị dị iche iche nke ahụ ojii, ọ nweghị ihe atụ ọzọ karịa Big Bang akọwabeghị mgbanwe ahụ.  N'ihi ya, ọtụtụ ndị ọkà mmụta mbara igwe na-ewere ụdị Big Bang nke eluigwe na ụwa ka ọ bụrụ nkọwa kacha mmamaka CMB.

Ọnọdụ dị elu nke ịdị n'otu n'ime eluigwe na ala a na-ahụ anya na anisotropy ya na-adịghị ike ma a tụrụ ya na-enye nkwado siri ike maka ihe nlereanya Big Bang n'ozuzu ya na ihe nlereanya ΛCDM ("Lambda Cold Dark Matter") karịsịa. Ọzọkwa, mgbanwe ndị ahụ na-agbanwe agbanwe na akụkụ nke buru ibu karịa mbara igwe na recombination. Ma ọ bụ nkwekọrịta dị otú ahụ dị mma, ma ọ bụ inflation cosmic mere.[5][6]

Ndị ọzọ na-abụghị okpomọkụ na polarization anisotropy, a na-atụ anya na CMB ugboro ụdịdị dị iche iche ga-egosipụta obere ọpụpụ site na iwu anụ ahụ nke a maara dị ka mgbagọ spectral.  Ndị a bụkwa na elekwasị anya nke mgbalị nyocha na-arụsi ọrụ ike na olile anya nke nha mbụ n'ime iri afọ ndị na-abịanụ, ebe ha nwere ọtụtụ ozi gbasara eluigwe na ụwa mbụ na nhazi nke ihe owuwu n'oge oge.[1][7]

Ihe ndị e ji mara ya

[dezie | dezie ebe o si]

Cosmic microwave background radiation bụ mmepụta nke otu, ike okpomọkụ nke ihe ojii na-abịa site n'akụkụ niile nke mbara igwe. Radiation bụ isotropic na ihe dịka otu akụkụ na 100,000: mgbọrọgwụ nke square dị naanị 18 μK, mgbe wepụsịrị dipole anisotropy site na Doppler shift nke radiation ndabere.[8] Nke ikpeazụ a sitere na ọsọ pụrụ iche nke Anyanwụ na-ejikọta ya na etiti ezumike cosmic ka ọ na-aga na 369.82 ± 0.11 km / s na-aga n'ihu na ìgwè kpakpando Leo (galactic longitude 264.021 ± 0.011, galactic latitude 48.253 ± 0.005). A tụọla dipole CMB na aberration na multipoles dị elu, kwekọrọ na mmegharị kpakpando.

Abụọ n'ime nnukwu ihe ịga nke ọma nke Big Bang theory bụ amụma ya maka ụdị ụdị ahụ ojii zuru oke na amụma ya zuru oke nke anisotropies na ndabere microwave nke mbara igwe.  Ụdịdị dị iche iche nke CMB abụrụla ụdị ụdị ahụ ojii a kacha atụpụta nke ọma na okike.

Akụkọ ihe mere eme

[dezie | dezie ebe o si]

Mmekọrịta ya na Big Bang

[dezie | dezie ebe o si]

Kemgbe nkwụsị, okpomọkụ na-acha anụnụ anụnụ nke radieshon azụ ejirila nkezi nke 1,089 daa n'ihi mgbasawanye nke eluigwe na ala.[9] Ka eluigwe na ala na-agbasa, a na-agbanwe photons CMB, na-eme ka ha belata ike. Okpomọkụ na-acha anụnụ anụnụ nke radieshon a na-anọgide na-agbanwe agbanwe na parameter nke na-akọwa mgbasawanye nke eluigwe na ala n'oge, nke a maara dị ka ogologo. Okpomọkụ ụcha Tr nke CMB dị ka ọrụ nke redshift, z, nwere ike igosi na ọ kwekọrọ na okpomọkụ ụta nke CMB dịka a hụrụ n'oge a (2.725 K ma ọ bụ 0.2348 meV):[10]

Tr = 2.725 K × (1 + z)

Maka nkọwa gbasara echiche ahụ na radieshon bụ ihe akaebe maka Big Bang, hụ radieshon nke agba agba nke Big Bang.

Nnukwu anisotropy

[dezie | dezie ebe o si]

A na-ekewa anisotropy, ma ọ bụ ndabere ntụziaka, nke ndabere microwave nke ụwa n'ime ụzọ abụọ: isi anisotropy, n'ihi mmetụta ndị na-eme n'elu ikposa ikpeazụ na tupu;  na anisotropy nke abụọ, n'ihi mmetụta dị ka mmekọrịta nke radieshon ndabere na-etinye aka na gas na-ekpo ọkụ ma ọ bụ ike ndọda, nke na-eme n'etiti njedebe ikpeazụ na onye na-ekiri ya.

A na-ekpebi nhazi nke anisotropies microwave ndabere site na mmetụta abụọ: oscillations acoustic na diffusion damping (nke a na-akpọkwa damping enweghị nsogbu ma ọ bụ damping silk).  Oscillation nke ụda na-ebilite n'ihi esemokwu dị na plasma photon-baryon na mbara igwe mbụ.  Nrụgide nke photons na-achọ ihichapụ anisotropies, ebe ndọda ndọda nke baryons, na-agba ọsọ na-agba ọsọ nke ukwuu karịa ọkụ, na-eme ka ha na-adaba ka ọ bụrụ oke oke.  Mmetụta abụọ a na-asọ mpi imepụta oscillations acoustic, nke na-enye ndabere ngwa ndakwa nri ya njirimara kacha elu.  Ọnụ ọgụgụ kasị elu kwekọrọ, n'ụzọ siri ike, na resonances nke photons decouple mgbe otu ụdị dị na njupụta ya kacha elu.

Ugwu ndị ahụ nwere akara aka na-adọrọ mmasị. Ogologo oghere nke ọnụ ọgụgụ mbụ na-ekpebi mgbagwoju anya nke eluigwe na ala (ma ọ bụghị topology nke eluigwe na ụwa). Ọnụ ọgụgụ kachasị elu na-esote - ọnụ ọgụgụ nke ọnụ ọgụgụ dị iche iche na ọnụ ọgụgụ dị elu - na-ekpebi ọnụ ọgụgụ dị ala nke baryon.[11] Enwere ike iji ọnụ ọgụgụ nke atọ nweta ozi gbasara njupụta ihe gbara ọchịchịrị.[12]

Ebe ndị dị n'elu na-enye ozi dị mkpa gbasara ọdịdị nke mgbagwoju anya njupụta nke mbụ.  E nwere ụdị isi abụọ dị mkpa nke njupụta njupụta a na-akpọ adiabatic na isocurvature.  Mgbagwoju anya njupụta n'ozuzu bụ ngwakọta nke ha abụọ, yana echiche dị iche iche nke na-akọwapụta ụdị nhụsi ike njupụta nke mbụ na-ebu amụma ngwakọta dị iche iche.

A na-akpata mmetụta abụọ na-enweghị nkwekọrịta, mgbe ọgwụgwọ nke plasma primordial dị ka mmiri na-amalite ịgbaji:

Omimi nke LSS na-ezo aka n'eziokwu ahụ bụ na nkwụsị nke photons na baryons anaghị eme ozugbo, kama ọ chọrọ akụkụ dị ịrịba ama nke afọ nke eluigwe na ala ruo n'oge ahụ. Otu usoro nke ịkọwa ogologo oge usoro a were na-eji ọrụ ọhụụ nke photon (PVF). A na-akọwa ọrụ a ka, na-egosi PVF site na P (t), ohere nke phot + dton CMB ikpeazụ gbasasịrị n'etiti oge t na t t + dt dt bụ nke P (t) dt nyere.

Ọnụ ọgụgụ kachasị elu nke PVF (oge o yikarịrị ka ọ ga-abụ na photon CMB e nyere gbasasịrị) ka a maara nke ọma. Nsonaazụ WMAP nke afọ mbụ na-etinye oge P (t) nwere oke dị ka afọ 372,000.[13] A na-ewere nke a dịka "oge" nke CMB guzobere. Otú ọ dị, iji chọpụta ogologo oge ọ were photons na baryons iji gbasaa, anyị chọrọ ihe atụ nke obosara nke PVF. Ndị otu WMAP chọpụtara na PVF karịrị ọkara nke uru ya kachasị elu ("obosara zuru ezu na ọkara kachasị elu", ma ọ bụ FWHM) n'ime oge nke afọ 115,000. Site n'ihe a, nkewa mere karịrị afọ 115,000, mgbe ọ zuru ezu, eluigwe na ala dị ihe dịka afọ 487,000.

Oge na-adịghị mma

[dezie | dezie ebe o si]

Kemgbe ọ bụ na CMB malitere, o doro anya na ọtụtụ usoro anụ ahụ na-esote gbanweworo ya, bụ ndị a na-akpọkọ ọnụ dị ka anisotropy oge ikpeazụ, ma ọ bụ anisotropy nke abụọ.  Mgbe CMB photon nwere onwe ya ịga njem na-enweghị mgbochi, ihe nkịtị na mbara igwe na-abụkarị n'ụdị hydrogen na-anọpụ iche na atom helium.  Otú ọ dị, nleba anya nke ụyọkọ kpakpando taa yiri ka ọ na-egosi na ọtụtụ n'ime ụda nke intergalactic media (IGM) nwere ihe ionized (ebe ọ bụ na e nwere ahịrị absorption ole na ole n'ihi atom hydrogen).  Nke a na-egosi oge ịlọghachite n'oge ụfọdụ ihe nke eluigwe na ala gbajiri ion hydrogen.

A na-agbasa photons CMB site na ụgwọ efu dị ka electrons ndị na-ejikọtaghị na atọm. N'ime eluigwe na ala nke ionized, a tọhapụrụ ụdị ihe ndị a na-akwụ ụgwọ site na atọm na-anọpụ iche site na radiation (ultraviolet). Taa, ụgwọ ndị a na-akwụghị ụgwọ dị ala nke ukwuu n'ọtụtụ n'ime ọnụ ọgụgụ nke eluigwe na ala nke na ha anaghị emetụta CMB. Otú ọ dị, ọ bụrụ na IGM bụ ionized n'oge mbụ mgbe eluigwe na ala ka jupụtara, mgbe ahụ enwere mmetụta abụọ dị mkpa na CMB:

Ụgbọ mbara igwe WMAP ahụla mmetụta abụọ a, na-enye ihe akaebe na eluigwe na ala nwere ionized n'oge mbụ, na redshift karịa 17. [nkọwa dị mkpa] Ebe zuru ezu nke radiation ionizing mbụ a ka bụ okwu arụmụka sayensị. O nwere ike ịgụnye ìhè kpakpando sitere na ọnụ ọgụgụ mbụ nke kpakpando (ọnụ ọgụgụ nke atọ kpakpando), supernovae mgbe kpakpando mbụ ndị a ruru ọgwụgwụ nke ndụ ha, ma ọ bụ radiation nke radiation nke diski mkpokọta nke nnukwu oghere ojii mepụtara.

Oge na-esote mmepụta nke microwave cosmic background - na tupu ịhụ kpakpando mbụ - bụ nke ndị na-ahụ maka mbara igwe na-akpọ Dark Age, ọ bụkwa oge ndị na-enyocha mbara igwe na'okpuru ọmụmụ ihe siri ike (lee radiation 21 centimeter).

Mmetụta abụọ ọzọ nke mere n'etiti reionization na nyocha anyị banyere ndabere microwave cosmic, na nke yiri ka ọ na-akpata anisotropies, bụ mmetụta Sunyaev-Zeldovich, ebe igwe ojii nke electrons dị elu na-agbasa radieshon, na-ebufe ụfọdụ ike ya na CMB.  photons, na mmetụta Sachs-Wolfe, nke na-eme ka foton si na Cosmic Microwave Background na-atụgharị na-acha uhie uhie ma ọ bụ na-acha anụnụ anụnụ n'ihi mgbanwe n'akụkụ ndọda.

Polarization

[dezie | dezie ebe o si]

Ụdị BA na-eme ka ihe ndabere nke microwave cosmic dị na ọkwa nke microkelvin ole na ole. E nwere ụdị polarization abụọ, nke a na-akpọ E-modes na B-modes. Nke a dị ka electrostatics, ebe oghere eletrik (E-field) nwere curl na-apụ n'anya na oghere magnetik (B-field) na-apụ apụ. E-modes na-ebilite n'ụzọ okike site na mgbasa Thomson na plasma dị iche iche. A naghị emepụta ụdị B site na nsogbu dị iche iche. Kama nke ahụ, enwere ike ịmepụta ha site na usoro abụọ: nke mbụ bụ site na lensing nke E-modes, nke South Pole Telescope tụrụ na 2013; nke abụọ sitere na ebili mmiri nke na-esite na inflation cosmic.[14] Ịchọpụta ụdị B siri ike nke ukwuu, ọkachasị dịka a maghị ogo mmetọ n'ihu, na mgbaàmà anya na-adịghị ike na-agwakọta mgbaàmà E-mode siri ike na mgbaàmà B-mode.[15]

Ụdị E

[dezie | dezie ebe o si]

Ụdị B

[dezie | dezie ebe o si]

Ndị na-ahụ maka mbara igwe na-ebu amụma ụdị B abụọ, nke mbụ mepụtara n'oge inflation cosmic n'oge na-adịghị anya mgbe nnukwu mgbawa gasịrị, na nke abụọ mepụtara site na gravitational lensing n'oge ndị ọzọ.[16][17][18][19]

Ifufe ndị nwere ike ndọda

[dezie | dezie ebe o si]

Primordial gravitational waves bụ gravitational ebili mmiri nke a pụrụ ịhụ na polarisation nke cosmic microwave background na inwe mmalite ha na mbara igwe mbụ. Ihe nlereanya nke inflation cosmic na-ebu amụma na ụdị ebili mmiri ndị dị otú ahụ kwesịrị ịpụta; ya mere, nchọpụta ha ga-akwado echiche nke inflation, na ike ha nwere ike ikwenye ma wepụ ụdị dị iche iche nke inflation. Ọ bụ nsonaazụ nke ihe atọ: mgbasawanye inflationary, reating mgbe inflation gasịrị, na mgbagwoju anya nke ihe na radiation.[20]

N'abalị ir = Templeeti:Vali na asaa n'ọnwa Machị afọ 2014, a mara ọkwa na ngwá ọrụ BICEP2 achọpụtala ụdị B mbụ, nke kwekọrọ na inflation na gravitational waves na mmalite eluigwe na ala na ọkwa nke r = 0.20 + 0.07−0.05, nke bụ ọnụọgụ ike dị na gravitative waves ma e jiri ya tụnyere ọnụọgụ nke ike dị na nsogbu ndị ọzọ na mmalite eluigwe.r = Templeeti:Val A sị na e gosipụtara nke a, ọ gaara enye ihe akaebe siri ike maka inflation cosmic na Big Bang na megide ihe nlereanya ekpyrotic nke Paul Steinhardt na Neil Turok.[21][22][23][24][25][26][27] Otú ọ dị, na 19 June 2014, a kọrọ na obi ike dị ala n'ịkwado nchọpụta ahụ[25][28][29][30]

Igwe anya nke ikike ndọda

[dezie | dezie ebe o si]

Nnyocha nke microwave

[dezie | dezie ebe o si]

N'ime 1990s, a ọnụ ọgụgụ mbụ kacha elu site na nhụsianya na-elu na 2000 rọ BOOMERanG kọkwara na àmà ike ihie elu na-ewere ọnọdụ n'ihe dị ka otu ogo.  Tinyere data ndị ọzọ gbasara mbara igwe, ndị isi a na geometry nke ese na ala dị iche.  Ọtụtụ interferometers dabere na ala nyere nha ihuenyo ahụ n'ụzọ ziri ezi n'ime afụ afụ sochirinụ, obere obere Array, Degree Angular Scale Interferometer (DASI), na Cosmic Background Imager (CBI).  DASI mere mbụ mbụ nke polarization nke CMB na CBI nyere ihe ngosi nke mbụ E-mode polarization spectrum na ihe àmà na-egosi na ọ bụ nke T-mode spectrum.

N'ime 1990s, a tụrụ ọnụ ọgụgụ mbụ kacha elu site na nhụsianya na-abawanye na 2000 nnwale BOOMERanG kọrọ na mgbanwe ike kachasị elu na-ewere ọnọdụ n'ihe dị ka otu ogo.  Tinyere data ndị ọzọ gbasara mbara igwe, nsonaazụ ndị a pụtara na geometry nke eluigwe na ala dị larịị.  Ọtụtụ interferometers dabere na ala nyere nha mgbanwe mgbanwe ahụ n'ụzọ ziri ezi n'ime afọ atọ sochirinụ, gụnyere obere obere Array, Degree Angular Scale Interferometer (DASI), na Cosmic Background Imager (CBI).  DASI mere nchọpụta mbụ nke polarization nke CMB na CBI nyere ihe ngosi nke mbụ E-mode polarization spectrum na ihe àmà na-adọrọ adọrọ na ọ bụ nke T-mode spectrum.

Na June 2001, NASA weputara ozi mbara igwe CMB nke abụọ, WMAP, iji mee nha nke ọma karịa nke nnukwu anisotropies n'elu mbara igwe zuru oke.  WMAP na-eji symmetric, nyocha ngwa-ngwa ọtụtụ mgbanwe, igwe redio na-agbanwe ngwa ngwa iji belata mkpọtụ mgbaama na-abụghị nke mbara igwe.[9] [1] Nsonaazụ mbụ sitere na ozi a, nke ekpughere na 2003, bụ nkọwa zuru oke nke ụdị ike angular n'ọ̀tụ̀tụ̀ na-erughị otu ogo, na-amachibido usoro mbara igwe dị iche iche.  Nsonaazụ a dabara n'ụzọ sara mbara yana ndị a na-atụ anya ya site na mmụba nke mbara igwe yana echiche dị iche iche na-asọmpi, ma dị na nkọwa zuru ezu na ụlọ akụ data NASA maka Cosmic Microwave Background (CMB) (lee njikọ dị n'okpuru).  Agbanyeghi na WMAP weputara nha nke oma nke ntughari nkuku buru ibu na CMB (ihe owuwu dika nke sara mbara na mbara igwe dika onwa), o nweghi mkpebi nkuku iji tuta ntughari nkpirisi nke nlere anya site na mbu dabere na ala.  interferometers.

Ọrụ ohere nke atọ, ESA (European Space Agency) Planck Surveyor, malitere na May 2009 wee mee nyocha ọbụna karịa ruo mgbe emechiri ya na October 2013. Planck jiri ma HEMT radiometers na teknụzụ bolometer wee tụọ CMB na a.  obere nha karịa WMAP.  A nwalere ihe nchọta ya na teliskop Antarctic Viper dị ka ACBAR (Arcminute Cosmology Bolometer Array Receiver) nnwale — nke rụpụtala nha kachasị na obere akpịrịkpa angular ruo taa — yana na teliskop balloon Archeops.

Mbelata data na nyocha

[dezie | dezie ebe o si]

Data CMBR raw, ọbụlagodi site na ụgbọ ala oghere dị ka WMAP ma ọ bụ Planck, nwere mmetụta dị n'ihu nke na-ekpuchicha usoro dị mma nke ndabere ngwa ngwa igwe.  A na-atụkwasị ihe owuwu ahụ nke ọma na data CMBR nke a na-emepụta ihe mana ọ dị obere ka a hụ ya n'ogo nke data raw.  Ihe kacha pụta ìhè n'ime mmetụta dị n'ihu bụ dipole anisotropy nke mmegharị anyanwụ kpatara na ndabere CMBR.  Anisotropy dipole na ndị ọzọ n'ihi mmegharị kwa afọ nke ụwa metụtara anyanwụ na ọtụtụ isi mmalite microwave na ụgbọ elu galactic na ebe ndị ọzọ ka a ga-ewepụrịrị iji kpughee ụdị dị iche iche dị ntakịrị na-akọwapụta usoro dị mma nke ndabere CMBR.

ebe okwu ahụ na-atụle okpomọkụ na okwu na-akọwa mgbanwe ahụ, ebe ọ na-ezo aka na nkwekọrịta okirikiri, na l bụ ọnụọgụ multipole ebe m bụ ọnụọụọgụ azimuthal.

Okwu CMBR (ℓ=0)

[dezie | dezie ebe o si]

CMBR dipole anisotropy (= 1)

[dezie | dezie ebe o si]

Ọmụmụ ihe ọmụmụ 2021 nke Wide-field Infrared Survey Explorer na-ajụ nkọwa kinematic nke CMB anisotropy nwere ntụkwasị obi dị elu.[31]

Multipole ( >2)

[dezie | dezie ebe o si]

A na-ewere mgbanwe ọnọdụ okpomọkụ dị na maapụ okpomọkụ CMB na multipoles dị elu, ma ọ bụ ≥ 2, dị ka nsonaazụ nke njupụta na mmalite Eluigwe na Ala, tupu oge nchikota.  Tupu nchikota, Eluigwe na Ala nwere plasma na-ekpo ọkụ, nke siri ike nke electrons na baryons.  N'ebe dị oke ọkụ dị otú ahụ, electrons na protons enweghị ike ịmepụta atom na-anọpụ iche.  Baryon ndị dị na Eluigwe na Ala n'oge gara aga ka nwere nnukwu ionized wee jikọta ya na foton nke ọma site na mmetụta nke ịgbasa Thompson.  Ihe omume ndị a mere ka nrụgide na ike ndọda mee ihe megide ibe ha, ma kpalite mgbanwe na plasma photon-baryon.  Ngwa ngwa ka oge nhazigharị ahụ gasịrị, mgbasawanye ngwa ngwa nke eluigwe na ala mere ka plasma dajụọ na mgbanwe ndị a "na-agbanye n'ime" maapụ CMB anyị na-ahụ taa.  Usoro a ekwuru mere na ngbanwe nke gburugburu z⋍ 1100. ≥ 2 z ⋍ 1100.[32]

Ihe ndị ọzọ na-adịghị mma

[dezie | dezie ebe o si]

Ọganihu n'ọdịnihu

[dezie | dezie ebe o si]

N'iche na eluigwe na ala na-aga n'ihu na-agbasa ma ọ naghị ata ahụhụ Big Crunch, Big Rip, ma ọ bụ ọdịnihu ọzọ yiri ya, ndabere microwave cosmic ga-aga n"ihu na-acha uhie uhie ruo mgbe a gaghịzi achọpụta ya, ma ga-ebu ụzọ dochie ya site na nke ìhè kpakpando mepụtara, ma eleghị anya, mgbe e mesịrị site na mpaghara radiation nke usoro nwere ike ime n'ọdịnihu dị anya nke eluigwe na ala dị ka mbibi proton, evaporation nke oghere ojii, na mbibi positronium.[33][34]

Ọganihu n'ọdịnihu nwetehach na nkowaputa

[dezie | dezie ebe o si]

Okpomọkụ (nke na-abụghị microwave background) amụma okpomọkụ

[dezie | dezie ebe o si]
  • 1896 - Charles Édouard Guillaume mere atụmatụ na "radiation nke kpakpando" bụ 5-6 K.[35]
  • 1926 - Sir Arthur Eddington na-eme atụmatụ radiation na-abụghị nke ọkụ nke ìhè kpakpando na ụyọkọ kpakpando "... site na usoro E = σT4 okpomọkụ dị irè kwekọrọ na njupụta a bụ 3.18 ° zuru oke ... ihe ojii.[36]
  • 1930s - Cosmologist Erich Regener gbakọrọ na spectrum na-abụghị nke okpomọkụ nke cosmic rays na ụyọkọ kpakpando nwere okpomọkụ dị irè nke 2.8 K.
  • 1931 - Okwu microwave nke mbụ e ji bipụta: "Mgbe a mara nnwale ndị nwere wavelengths dị ala dị ka 18 cm, enwere ihe ijuanya na-enweghị isi + na edoziwo nsogbu nke micro-wave n'oge na-adịghị anya. " Telegraph & Telephone Journal XVII.
  • 1934 - Richard Tolman na-egosi na radieshon ojii na mbara igwe na-agbasawanye na-ajụ oyi ma na-anọgide na-ekpo ọkụ.
  • 1938 - Onye mmeri Nobel Prize (1920) Walther Nernst na-eme atụmatụ na okpomọkụ nke cosmic ray dị ka 0.75 K.
  • 1946 - Robert Dicke na-ebu amụma "... radiation from cosmic matter" na < 20 K, mana ọ naghị ezo aka na radiation ndabere.[37]
  • 1946 - George Gamow gbakọrọ okpomọkụ nke 50 K (na-eche na eluigwe na ala dị ijeri afọ atọ), na-ekwu na "... na-ekwekọ n'ụzọ ezi uche dị na ya na okpomọkụ dị n'etiti kpakpando", mana ekwughị radieshon azụ.[38]
  • 1953 - Erwin Finlay-Freundlich na nkwado nke echiche ọkụ ike gwụrụ ya, na-enweta okpomọkụ ojii maka oghere intergalactic nke 2.3 K na nkọwa sitere na Max Born na-atụ aro redio astronomy dị ka onye na-eme mkpebi n'etiti mgbasawanye na enweghị njedebe.[39]

Nkọwa na nha nke radiation nke microwave

[dezie | dezie ebe o si]
  • 1941 - Andrew McKellar chọpụtara ihe ndabere microwave cosmic dị ka akụkụ kachasị jụụ nke interstellar medium site na iji mkpali nke akara abụọ nke CN nke W. S. Adams tụrụ na kpakpando B, na-achọta "okpomọkụ dị irè nke ohere" (nkezi okpomọkụ bolometric) nke 2.3 K.[40][41]
  • 1946 - George Gamow gbakọrọ okpomọkụ nke 50 K (na-eche na eluigwe na ala dị ijeri afọ atọ), na-ekwu na "... na-ekwekọ n'ụzọ ezi uche dị na ya na okpomọkụ dị n'etiti kpakpando", mana ekwughị radieshon azụ.
  • 1948 - Ralph Alpher na Robert Herman na-eme atụmatụ "okpomọkụ dị na mbara igwe" na 5 K. Ọ bụ ezie na ha ekwughị kpọmkwem banyere radiation nke microwave, enwere ike ikwu ya.
  • 1949 - Ralph Alpher na Robert Herman mere atụmatụ ọzọ na okpomọkụ dị na 28 K.
  • 1953 - George Gamow mere atụmatụ 7 K.[37]
  • 1956 - George Gamow mere atụmatụ 6 K.[37]
  • 1955 - Émile Le Roux nke Nançay Radio Observatory, na nyocha mbara igwe na λ = 33 cm, kọrọ na radiation isotropic nke 3 kelvins, gbakwunyere ma ọ bụ belata 2.[37]
  • 1957 - Tigran Shmaonov na-akọ na "okpomọkụ zuru oke nke redio ... bụ 4±3 K".[42] A na-ekwu na "nlele ahụ gosipụtara na ike radiation na-adabere na oge ma ọ bụ ntụziaka nke nyocha ... ọ doro anya ugbu a na Shmaonov hụrụ ihe ndabere microwave cosmic na wavelength nke 3.2 cm.[43][44]
  • Afọ 1960 - Robert Dicke na-eme atụmatụ na okpomọkụ radiation nke microwave nke 40 K[37][45]
  • 1964 - A. G. Doroshkevich na Igor Dmitrievich Novikov bipụtara akwụkwọ dị mkpirikpi na-atụ aro nchọpụta microwave maka radieshon ojii nke Gamow, Alpher, na Herman buru n'amụma, ebe ha na-akpọ ihe omume radieshon CMB dị ka ihe a na-achọpụta.[46]
  • 1964-65 - Arno Penzias na Robert Woodrow Wilson na-atụle okpomọkụ ka ọ bụrụ ihe dịka 3 K. Robert Dicke, James Peebles, P. G. Roll, na D. T. Wilkinson na-akọwa radiation a dị ka akara nke Big Bang.
  • 1966 - Rainer K. Sachs na Arthur M. Wolfe na-ebu amụma na microwave background fluctuation amplitudes nke ikike ndọda nwere ike ịdị iche iche n'etiti ndị na-ekiri na ebe ikpeazụ na-agbasa (lee Sachs-Wolfe effect).
  • 1968 - Martin Rees na Dennis Sciama na-ebu amụma na microwave background fluctuation amplitudes nke photons na-agafe olulu mmiri na-adabere n'oge.
  • 1969 - R. A. Sunyaev na Yakov Zel'dovich na-amụ ihe gbasara mgbasa nke microwave background photons site na electrons na-ekpo ọkụ (lee mmetụta Sunyaev-Zel'dovich).
  • 1983 - Ndị nchọpụta sitere na Cambridge Radio Astronomy Group na Owens Valley Radio Observatory na-achọpụta mmetụta Sunyaev-Zel'dovich site na ụyọkọ kpakpando.
  • 1983 - A malitere nnwale RELIKT-1 Soviet CMB anisotropy.
  • 1990 - FIRAS na Satellite Cosmic Background Explorer (COBE) na-atụle ọdịdị ahụ ojii nke CMB spectrum n'ụzọ ziri ezi, ma na-egosi na ndabere microwave nwere ihe fọrọ nke nta ka ọ bụrụ ọdịdị ojii zuru oke na T = 2.73 K ma si otú ahụ na-egbochi njupụta nke intergalactic medium.
  • Jenụwarị 1992 - Ndị ọkà mmụta sayensị nyochara data sitere na RELIKT-1 kọrọ nchọpụta nke anisotropy na ndabere microwave cosmic na nzukọ ọmụmụ ihe astrophysical nke Moscow.[47]
  • 1992 - Ndị ọkà mmụta sayensị nyochara data sitere na COBE DMR na-akọ nchọpụta nke anisotropy na ndabere microwave cosmic.[48]
  • 1995 - Cosmic Anisotropy Telescope na-eme nchọpụta mbụ dị elu nke microwave cosmic.
  • 1999 - Nnyocha mbụ nke oscillations acoustic na CMB anisotropy angular power spectrum site na TOCO, BOOMERANG, na Maxima Experiments. Nnyocha BOOMERanG na-eme map dị elu na mkpebi dị n'etiti, ma kwado na eluigwe na ala bụ "dị larịị".
  • 2002 - DASI chọpụtara Polarization.[49]
  • 2003 - E-mode polarization spectrum nwetara site na CBI.[50] CBI na Very Small Array na-emepụta map dị elu na mkpebi dị elu (na-ekpuchi obere mpaghara nke mbara igwe).
  • 2003 - Ụgbọ mbara igwe Wilkinson Microwave Anisotropy Probe na-emepụta map dị elu na mkpebi dị ala na nke dị n'etiti nke mbara igwe dum (WMAP anaghị enye data dị elu, mana ọ na-emeziwanye na map mkpebi dị n'agbata site na BOOMERanG).
  • 2004 - E-mode polarization spectrum nwetara site na CBI.[51]
  • 2004 - Arcminute Cosmology Bolometer Array Receiver na-emepụta map dị elu nke usoro mkpebi dị elu nke WMAP na-adịghị emepụta.
  • 2005 - Arcminute Microkelvin Imager na Sunyaev-Zel'dovich Array malitere nyocha mbụ maka ụyọkọ kpakpando dị elu site na iji mmetụta Sunyaev -Zel'Dovich.
  • 2005 - E nyere Ralph A. Alpher National Medal of Science maka ọrụ ya na nucleosynthesis na amụma na mgbasawanye eluigwe na ala na-ahapụ radiation, si otú a na-enye ihe nlereanya maka Big Bang theory.
  • 2006 - A tọhapụrụ nsonaazụ WMAP afọ atọ a na-atụ anya ya, na-akwado nyocha gara aga, na-edozi ọtụtụ isi, ma gụnyere data polarization.
  • 2006 - Abụọ n'ime ndị isi nchọpụta COBE, George Smoot na John Mather, natara Nobel Prize na Physics na 2006 maka ọrụ ha na nyocha ziri ezi nke CMBR.
  • 2006-2011 - Nnyocha ka mma site na WMAP, nyocha ọhụrụ supernova ESSENCE na SNLS, na oscillations nke ụda olu sitere na SDSS na WiggleZ, na-aga n'ihu na-agbaso ụkpụrụ Lambda-CDM.
  • 2010 - A tọhapụrụ map mbụ nke mbara igwe niile site na telivishọn Planck.
  • 2013 - A tọhapụrụ map mbara igwe niile ka mma site na telivishọn Planck, na-eme ka nha nke WMAP dịkwuo mma ma gbasaa ha ruo obere.
  • 2014 - Na Machị 17, 2014, ndị na-ahụ maka ihe ndị dị na mbara igwe nke njikọ aka BICEP2 kwupụtara nchọpụta nke inflationary gravitational waves na B-mode power spectrum, nke ọ bụrụ na egosiri ya, ga-enye ihe akaebe doro anya maka echiche nke inflation.[21][22][23][25][52] Otú ọ dị, na 19 June 2014, e belatara obi ike n'ịkwado nchọpụta nke inflation cosmic.[25][28][29]
  • 2015 - Na Jenụwarị 30, 2015, otu ìgwè ndị na-enyocha mbara igwe site na BICEP2 wepụrụ nkwupụta e mere n'afọ gara aga. Dabere na data jikọtara nke BICEP2 na Planck, European Space Agency kwupụtara na enwere ike ịkọwa mgbaàmà ahụ kpamkpam na uzuzu na Milky Way.[53]
  • 2018 - A tọhapụrụ data na map ikpeazụ site na telivishọn Planck, yana nyocha ka mma nke polarization na nnukwu ihe.[54]
  • 2019 - A na-aga n'ihu na-ewepụta nyocha nke Planck telescope nke data ikpeazụ ha na 2018.[55]

N'omenala a ma ama

[dezie | dezie ebe o si]
  • Na usoro TV Stargate Universe (2009-2011), e wuru ụgbọ elu oge ochie, Destiny, iji mụọ usoro na CMBR nke bụ ozi dị nro nke fọdụrụ site na mmalite oge.
  • Na Wheelers, akwụkwọ akụkọ (2000) nke Ian Stewart & Jack Cohen, a kọwara CMBR dị ka nnyefe zoro ezo nke mmepeanya oge ochie. Nke a na-enye ohere ka ndị Jovian "blimps" nwee ọha mmadụ okenye karịa oge a na-ahụ ugbu a nke eluigwe na ala.
  • Na The Three-Body Problem, akwụkwọ akụkọ 2008 nke Liu Cixin dere, nyocha sitere na mmepeanya ala ọzọ na-emebi ngwá ọrụ na-enyocha CMBR iji ghọgbuo onye na-ekwere na mmepe anya nwere ike ịchịkwa CMBR n'onwe ya.[56]
  • Mbipụta 2017 nke iwu Swiss 20 francs depụtara ọtụtụ ihe ndị dị na mbara igwe na anya ha - a kpọtụrụ CMB aha na 430 · 1015 light-seconds.[57]
  • Na usoro Marvel nke 2021 WandaVision, a chọtara mgbasa ozi telivishọn dị omimi n'ime Cosmic Microwave Background.[58]

Hụkwa zie

[dezie | dezie ebe o si]

 

Edensibia

[dezie | dezie ebe o si]

Ịgụ ihe ọzọ

[dezie | dezie ebe o si]

Njikọ mpụga

[dezie | dezie ebe o si]
  1. Sunyaev (1974). "The thermal history of the universe and the spectrum of relic radiation", in Longair: Confrontation of Cosmological Theories with Observational Data, IAUS. Springer, 167–173. DOI:10.1007/978-94-010-2220-0_14. ISBN 978-90-277-0457-3. 
  2. Penzias (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". The Astrophysical Journal 142 (1): 419–421. DOI:10.1086/148307. 
  3. Smoot Group (28 March 1996). The Cosmic Microwave Background Radiation.. Lawrence Berkeley Lab. Retrieved on 2008-12-11.
  4. NASA's "CMB Surface of Last Scatter". Retrieved on 2023-07-05.
  5. Dodelson (2003). "Coherent Phase Argument for Inflation". AIP Conference Proceedings 689: 184–196. DOI:10.1063/1.1627736. 
  6. Baumann (2011). The Physics of Inflation. University of Cambridge. Archived from the original on 2018-09-21. Retrieved on 2015-05-09.
  7. Chluba (2021). "New Horizons in Cosmology with Spectral Distortions of the Cosmic Microwave Background". Voyage 2050 Proposals 51 (3): 1515–1554. DOI:10.1007/s10686-021-09729-5. 
  8. Wright (2004). "Theoretical Overview of Cosmic Microwave Background Anisotropy", in W. L. Freedman: Measuring and Modeling the Universe, Carnegie Observatories Astrophysics Series. Cambridge University Press. ISBN 978-0-521-75576-4. 
  9. 9.0 9.1 Bennett (2003). "First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results". Astrophysical Journal Supplement Series 148 (1): 1–27. DOI:10.1086/377253. Bennett, C. L.; (WMAP collaboration); Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N.; Tucker, G. S.; Wollack, E.; Wright, E. L.; Barnes, C.; Greason, M. R.; Hill, R. S.; Komatsu, E.; Nolta, M. R.; Odegard, N.; Peiris, H. V.; Verde, L.; Weiland, J. L.; et al. (2003). "First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results". Astrophysical Journal Supplement Series. 148 (1): 1–27. arXiv:astro-ph/0302207. Bibcode:2003ApJS..148....1B. doi:10.1086/377253. S2CID 115601. This paper warns that "the statistics of this internal linear combination map are complex and inappropriate for most CMB analyses." Kpọpụta njehie: Invalid <ref> tag; name "FirstWMAP" defined multiple times with different content
  10. Noterdaeme, P. (February 2011). "The evolution of the cosmic microwave background temperature. Measurements of TCMB at high redshift from carbon monoxide excitation". Astronomy and Astrophysics 526: L7. DOI:10.1051/0004-6361/201016140. 
  11. Wayne Hu. Baryons and Inertia.
  12. Wayne Hu. Radiation Driving Force.
  13. WMAP Collaboration (2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters". Astrophysical Journal Supplement Series 148 (1): 175–194. DOI:10.1086/377226. 
  14. Hanson (2013). "Detection of B-mode polarization in the Cosmic Microwave Background with data from the South Pole Telescope". Physical Review Letters 111 (14): 141301. DOI:10.1103/PhysRevLett.111.141301. PMID 24138230. 
  15. Lewis (2006). "Weak gravitational lensing of the CMB". Physics Reports 429 (1): 1–65. DOI:10.1016/j.physrep.2006.03.002. 
  16. Seljak (June 1997). "Measuring Polarization in the Cosmic Microwave Background". Astrophysical Journal 482 (1): 6–16. DOI:10.1086/304123. 
  17. Seljak (March 17, 1997). "Signature of Gravity Waves in the Polarization of the Microwave Background". Phys. Rev. Lett. 78 (11): 2054–2057. DOI:10.1103/PhysRevLett.78.2054. 
  18. Kamionkowski (1997). "A Probe of Primordial Gravity Waves and Vorticity". Phys. Rev. Lett. 78 (11): 2058–2061. DOI:10.1103/PhysRevLett.78.2058. 
  19. Zaldarriaga (July 15, 1998). "Gravitational lensing effect on cosmic microwave background polarization". Physical Review D 58 (2): 023003. DOI:10.1103/PhysRevD.58.023003. 
  20. Scientists Report Evidence for Gravitational Waves in Early Universe (2014-03-17). Retrieved on 2007-06-20.
  21. 21.0 21.1 Clavin (March 17, 2014). NASA Technology Views Birth of the Universe. NASA. Retrieved on March 17, 2014. Kpọpụta njehie: Invalid <ref> tag; name "NASA-20140317" defined multiple times with different content
  22. 22.0 22.1 Overbye. "Space Ripples Reveal Big Bang's Smoking Gun", The New York Times, March 17, 2014. Retrieved on March 17, 2014. Kpọpụta njehie: Invalid <ref> tag; name "NYT-20140317" defined multiple times with different content
  23. 23.0 23.1 Overbye. "Ripples From the Big Bang", The New York Times, March 24, 2014. Retrieved on March 24, 2014. Kpọpụta njehie: Invalid <ref> tag; name "NYT-20140324" defined multiple times with different content
  24. "Gravitational waves: have US scientists heard echoes of the big bang?", The Guardian, 2014-03-14. Retrieved on 2014-03-14.
  25. 25.0 25.1 25.2 25.3 Ade, P.A.R. (BICEP2 Collaboration) (2014). "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2". Physical Review Letters 112 (24). DOI:10.1103/PhysRevLett.112.241101. PMID 24996078.  Kpọpụta njehie: Invalid <ref> tag; name "PRL-20140619" defined multiple times with different content
  26. Overbye. "Space Ripples Reveal Big Bang's Smoking Gun", The New York Times, March 17, 2014.
  27. Steinhardt, Paul J. (2007). Endless universe : beyond the Big Bang. Weidenfeld & Nicolson. ISBN 978-0-297-84554-6. OCLC 271843490. 
  28. 28.0 28.1 Overbye. "Astronomers Hedge on Big Bang Detection Claim", The New York Times, June 19, 2014. Retrieved on June 20, 2014. Kpọpụta njehie: Invalid <ref> tag; name "NYT-20140619" defined multiple times with different content
  29. 29.0 29.1 Amos. "Cosmic inflation: Confidence lowered for Big Bang signal", BBC News, June 19, 2014. Retrieved on June 20, 2014. Kpọpụta njehie: Invalid <ref> tag; name "BBC-20140619" defined multiple times with different content
  30. Planck Collaboration Team (9 February 2016). "Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes". Astronomy & Astrophysics 586 (133): A133. DOI:10.1051/0004-6361/201425034. 
  31. Secrest (2021). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal Letters 908 (2): L51. DOI:10.3847/2041-8213/abdd40. 
  32. P.A. Zyla et al. (Particle Data Group) (2020). "Review of Particle Physics". Progress of Theoretical and Experimental Physics 2020 (8). DOI:10.1093/ptep/ptaa104.  Cosmic Microwave Background review by Scott and Smoot.
  33. Krauss (2007). "The return of a static universe and the end of cosmology". General Relativity and Gravitation 39 (10): 1545–1550. DOI:10.1007/s10714-007-0472-9. 
  34. Adams (1997). "A dying universe: The long-term fate and evolution of astrophysical objects". Reviews of Modern Physics 69 (2): 337–372. DOI:10.1103/RevModPhys.69.337. 
  35. Guillaume, C.-É., 1896, La Nature 24, series 2, p. 234, cited in "History of the 2.7 K Temperature Prior to Penzias and Wilson" (PDF)
  36. Eddington, A., The Internal Constitution of the Stars, cited in "History of the 2.7 K Temperature Prior to Penzias and Wilson" (PDF)
  37. 37.0 37.1 37.2 37.3 37.4 Kragh (1999). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press. ISBN 978-0-691-00546-1. Kragh, H. (1999). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press. p. 135. ISBN 978-0-691-00546-1. "In 1946, Robert Dicke and coworkers at MIT tested equipment that could test a cosmic microwave background of intensity corresponding to about 20K in the microwave region. However, they did not refer to such a background, but only to 'radiation from cosmic matter'. Also, this work was unrelated to cosmology and is only mentioned because it suggests that by 1950, detection of the background radiation might have been technically possible, and also because of Dicke's later role in the discovery". See also Dicke (1946). "Atmospheric Absorption Measurements with a Microwave Radiometer". Physical Review 70 (5–6): 340–348. DOI:10.1103/PhysRev.70.340. Dicke, R. H.; et al. (1946). "Atmospheric Absorption Measurements with a Microwave Radiometer". Physical Review. 70 (5–6): 340–348. Bibcode:1946PhRv...70..340D. doi:10.1103/PhysRev.70.340. Kpọpụta njehie: Invalid <ref> tag; name "Kragh" defined multiple times with different content
  38. Gamow [1961] (2004). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Courier Dover Publications. ISBN 978-0-486-43868-9. 
  39. Erwin Finlay-Freundlich, "Ueber die Rotverschiebung der Spektrallinien" (1953) Contributions from the Observatory, University of St. Andrews; no. 4, p. 96–102. Finlay-Freundlich gave two extreme values of 1.9K and 6.0K in Finlay-Freundlich, E.: 1954, "Red shifts in the spectra of celestial bodies", Phil. Mag., Vol. 45, pp. 303–319.
  40. McKellar (1941). "Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space". Publications of the Dominion Astrophysical Observatory 7 (6): 251–272. 
  41. Weinberg (1972). Oxford Astronomy Encyclopedia. John Wiley & Sons, 514. ISBN 978-0-471-92567-5. 
  42. Shmaonov (1957). "Commentary" (in ru). Pribory I Tekhnika Experimenta 1: 83. DOI:10.1016/S0890-5096(06)60772-3. 
  43. It is noted that the "measurements showed that radiation intensity was independent of either time or direction of observation ... it is now clear that Shmaonov did observe the cosmic microwave background at a wavelength of 3.2 cm"
  44. Naselsky (2006). The Physics of the Cosmic Microwave Background. Cambridge University Press. ISBN 978-0-521-85550-1. 
  45. Helge Kragh (1999). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press. ISBN 978-0-691-00546-1. 
  46. Doroshkevich (1964). "Mean Density of Radiation in the Metagalaxy and Certain Problems in Relativistic Cosmology". Soviet Physics Doklady 9 (23): 4292–4298. DOI:10.1021/es990537g. 
  47. Nobel Prize In Physics: Russia's Missed Opportunities, RIA Novosti, Nov 21, 2006
  48. Sanders. "UC Berkeley, LBNL cosmologist George F. Smoot awarded 2006 Nobel Prize in Physics", UC Berkeley News, 13 October 2006. Retrieved on 2008-12-11.
  49. Kovac (2002). "Detection of polarization in the cosmic microwave background using DASI". Nature 420 (6917): 772–787. DOI:10.1038/nature01269. PMID 12490941. 
  50. Readhead (2004). "Polarization Observations with the Cosmic Background Imager". Science 306 (5697): 836–844. DOI:10.1126/science.1105598. PMID 15472038. 
  51. A. Readhead et al., "Polarization observations with the Cosmic Background Imager", Science 306, 836–844 (2004).
  52. BICEP2 News Templeeti:Pipe Not Even Wrong.
  53. Cowen (2015-01-30). "Gravitational waves discovery now officially dead". Nature. DOI:10.1038/nature.2015.16830. 
  54. Planck Collaboration (2020). "Planck 2018 results. I. Overview and the cosmological legacy of Planck". Astronomy and Astrophysics 641: A1. DOI:10.1051/0004-6361/201833880. 
  55. Planck Collaboration (2020). "Planck 2018 results. V. CMB power spectra and likelihoods". Astronomy and Astrophysics 641: A5. DOI:10.1051/0004-6361/201936386. 
  56. Liu (2014-09-23). The Three-Body Problem: "The Universe Flickers" (en-US). Tor.com. Retrieved on 2023-01-23.
  57. Astronomy in your wallet - NCCR PlanetS (en-US). nccr-planets.ch. Retrieved on 2023-01-23.
  58. WandaVision's 'cosmic microwave background radiation' is real, actually (en-US). SYFY Official Site (2021-02-03). Retrieved on 2023-01-23.