Jump to content

Microscopy nke Dark-field X-ray

Shí Wikipedia, njikotá édémédé nke onyobulạ

Dark-field X-ray microscopy (DFXM ma ọ bụ DFXRM[1]) bụ usoro ihe oyiyi eji eme ihe maka njirimara nhazi dị iche iche. Ọ nwere ike ịdepụta ihe ndị dị n'ime ala na nm-resolution site na iji ihe oyiyi synchrotron X-ray diffraction. Usoro a na-arụ ọrụ site na iji X-rays Usoro a na-arụ ọrụ site n'iji X-ray gbasasịrị agbasa iji mepụta ọdịiche dị elu, na site n'ịtụ ike na nkesa nke oghere nke oghere ndị ahụ, ọ ga-ekwe omume ịnweta map nke akụkụ atọ nke nhazi ihe atụ, nhazi, na nsogbu mpaghara.

Akụkọ ihe mere eme

[dezie | dezie ebe o si]

Otu ìgwè nọ na European Synchrotron Radiation Facility na Grenoble, France kọrọ na ngosipụta nnwale mbụ nke microscopy X-ray gbara ọchịchịrị n'afọ 2006. Kemgbe ahụ, usoro ahụ anọwo na-agbanwe ngwa ngwa ma gosipụta nnukwu nkwa na njirimara nhazi dị iche iche. Mmepe ya bụ n'ụzọ dị ukwuu n'ihi ọganihu na isi mmalite X-ray synchrotron, nke na-enye oke mgbagwoju anya na oke nke X-ray. Ọganihu nke microscopy X-ray nke gbara ọchịchịrị bụ mkpa maka ihe oyiyi na-adịghị ebibi ihe nke nnukwu ihe nlele crystalline na mkpebi dị elu, ọ na-aga n'ihu ịbụ ebe nyocha na-arụsi ọrụ ike taa. [2] [3] dị, microscopy nke oghere gbara ọchịchịrị, [4] microscopy X-ray nke oghere na-agba ọchịchịrị na microscopy [5] ejirila ya mee ihe iji gosipụta ihe ndị dị omimi.

Ụkpụrụ na ngwá ọrụ

[dezie | dezie ebe o si]
Igwe ọkụ monochromatic sitere na isi iyi synchrotron na-enwu ihe nlele ahụ. Ebumnuche [6] oghere anya na Detector bụ Ihe nchọpụta mpaghara 2D

Na usoro a, a na-eji isi iyi ọkụ synchrotron emepụta ụzarị X-ray siri ike ma kwekọọ ekwekọ, nke a na-elekwasị anya na ihe nlele site na iji oghere anya pụrụ iche. Ogwe anya -arụ ọrụ dị ka collimator iji họrọ ma lekwasị anya n'ìhè gbasasịrị agbasa, nke ihe nchọpụta 2D na-achọpụta iji mepụta usoro diffraction. Ogologo anya pụrụ iche na DFXM, nke a na-akpọ oghere anya X-ray, bụ akụkụ dị mkpa nke ngwá ọrụ achọrọ maka usoro ahụ. Enwere ike iji ihe [7] iche iche dị ka beryllium, silicon, na diamond mee ya, dabere na ihe ndị a chọrọ na nnwale ahụ. Ebumnuche ahụ na-enyere mmadụ aka ịgbasa ma ọ bụ belata mkpebi na oghere n'ime ihe nlele site na ịgbanwe ọnụ ọgụgụ nke oghere anya ọ bụla na idozi



p ′


{\https://wikimedia.org/api/rest_v1/media/math/render/svg/40e623e3163571a220ed60ecb31aa78c24104b85'}

na



q ′


{\displaystyle q'}

(dị ka ọ dị na foto) n'ụzọ kwekọrọ. Akụkụ diffraction


2 θ


{\displaystyle 2\theta }

bụ 10-30°.[8][9]

A na-edobe ihe nlele ahụ n'otu akụkụ nke na a na-egbochi ọkụ ọkụ ahụ kpọmkwem site na nkwụsịtụ ma ọ bụ oghere, a na-ahapụkwa oghere ndị dịpụrụ adịpụ site na nlele ahụ gafere site na ihe nchọpụta.[11].[10]

A na-etinye ihe crystalline (dịka ọmụmaatụ, ọka ma ọ bụ ngalaba) nke nhọrọ (akwụkwọ ndụ akwụkwọ ndụ) nke mere na a na-etinye onye nchọpụta ahụ na Bragg angle nke kwekọrọ na otu diffraction peak nke mmasị, nke a na-ekpebi site na nhazi kristal nke ihe nlele ahụ. Ihe mgbaru ọsọ ahụ na-eme ka ìhè a na-emebi emebi site na ihe


M =

q ′


/


p ′


{\displaystyle M=q'/p'}

ma na-emepụta ngosipụta 2D nke ọka ahụ. Site [11]'ikpughe ugboro ugboro n'oge ntụgharị 360° nke ihe ahụ gburugburu axis kwụ n'akụkụ diffraction vector.


G


{\

, a na-enweta ọtụtụ atụmatụ 2D nke ọka site na akụkụ dị iche iche. na-enweta map 3D site na ijikọta atụmatụ ndị a site na iji algọridim reconstruction [1] yiri ndị mepụtara maka Nnyocha CT. Ọ bụrụ na lattice nke ihe crystalline na-egosipụta ntụziaka dị n'ime, a na-ekwughachi usoro a maka ọtụtụ nnwale, nke akụkụ ahụ gosipụtara


α


{\displaystyle \alpha }

na


β


{\displaystyle \beta }

.

[12][13] nke DFXM ugbu a na ID06, ESRF, na-eji oghere refractive lens (CRL) dị ka ebumnuche, na-enye mkpebi nke 100 nm na mkpebi nke 0.001 °. 

Ngwa, njedebe na ihe ndị ọzọ

[dezie | dezie ebe o si]

Ngwa ndị dị ugbu a na ndị nwere ike itinye n'ọrụ

[dezie | dezie ebe o si]
Nchịkọta multiscale nke 10% tensile deformed aluminum. (a) Akụkụ nke eserese X-ray nke mkpụrụ niile dị na ihe atụ ahụ. (b) Ịgagharị n'otu ọka a na-etinye n'ime ya ma na-ese onyinyo ọdịiche dị n'ime. A na-egosi akụkụ kwụ ọtọ site na ọka maka ịdị mfe nke nyocha nke ọdịiche dị iche iche. (c) Nchịkọta ụzarị na-abata n'ụzọ kwụ ọtọ na-akọwa ọkwa micron n'ime ọka. N'okpuru ebe a: igodo ndị kwekọrọ na map ntụziaka

[14][15][16] na-eji DFXM eme ihe maka nyocha na-adịghị ebibi ihe ndị polycrystalline na ihe ndị mejupụtara, na-ekpughe 3D microstructure, [17] phases, [18] ntụziaka nke mkpụrụ nke ọ bụla, [19] na ụdị mpaghara. [20][10][21][22][23] na-ejikwa ya eme ihe maka ọmụmụ nke ihe ndị e ji eme ihe, [1] dislocations [2] [3] na ntụpọ ndị ọzọ, na nkwarụ [15] na usoro Mgbanwe na ihe ndị e dere, dị ka ọla [4] na ihe ndị mejupụtara. [24] nwere ike inye nghọta banyere microstructure na deformation nke ihe ndị dị na ala dị ka mineral na nkume, [1] na ihe ndị na-egbuke egbuke.

DFXM nwere ikike ịgbanwe mpaghara nke nanotechnology site n'inye ihe na-adịghị emebi emebi, ihe ngosi 3D dị elu nke nanostructures na nanomaterials. [25] na-eji ya eme ihe iji nyochaa ọdịdị 3D nke nanowires na ịchọpụta nkwarụ na nanotubes.

DFXM egosila ikike maka ịlele anụ ahụ na akụkụ ahụ dị iche iche na mkpebi dị elu. [26] A na-eji ya iji anya nke uche hụ microstructure 3D nke cartilage na ọkpụkpụ, yana ịchọpụta ọrịa cancer ara na mmalite nke ụdị òké.

Ihe mgbochi

[dezie | dezie ebe o si]

Igwe -ray siri ike eji na DFXM nwere ike imebi ihe nlele dị nro, ọkachasị ihe ndị dị ndụ. DFXM nwere ike ịta ahụhụ site [10] DFXM nwere ike ịta ahụhụ site na ihe osise eserese dị ka ihe mgbanaka, nke nwere ike imetụta ogo onyonyo yana njedebe nkọwa.

Ngwá ọrụ achọrọ maka DFXM dị oke ọnụ ma na-adịkarị naanị na ụlọ ọrụ synchrotron, na-eme ka ọtụtụ ndị na-eme nchọpụta ghara iru ya. [10] bụ ezie na DFXM nwere ike iru mkpebi dị elu, ọ ka adịghị elu ka mkpebi a nwetara site na usoro onyonyo ndị ọzọ dị ka nnyefe eletrọnịkị microscopy (TEM) ma ọ bụ X-ray crystallography.

Nkwadebe nke ihe nlele maka foto DFXM nwere ike ịbụ ihe ịma aka, ọkachasị maka ihe nlele ndị na-abụghị kristal. Enwekwara njedebe nha sample nke enwere ike iji onyinyo dịka usoro ahụ na-arụ ọrụ nke ọma na samples dị arọ, nke na-erughị 100 microns n'obosara, n'ihi mbelata nke X-ray beam site na samples buru ibu. DFXM ka na-ata ahụhụ site na ogologo oge njikọta, nke nwere ike igbochi ngwa ya. Nke [10] bụ n'ihi ọnụ ọgụgụ dị ala nke X-rays nke isi mmalite synchrotron na-ewepụta na mmetụta dị elu achọrọ iji chọpụta X-ray ndị gbasasịrị agbasa.

Ihe ndị ọzọ

[dezie | dezie ebe o si]

Enwere ọtụtụ usoro ọzọ maka DFXM, dabere na ngwa a, ụfọdụ n'ime ha bụ:

  • Differential-aperture [27]-ray structural microscopy (DAXM): DAXM bụ usoro synchrotron X-ray nke nwere ike ịnye ozi ziri ezi banyere nhazi mpaghara na nhazi crystallographic na akụkụ atọ na mkpebi ohere nke ihe na-erughị otu micron. [28] na-enyekwa nkenke nkenke na nkenke mkpụmkpụ mpaghara na nkenike dị elu nke ihe dịgasị iche iche, gụnyere otu kristal, polycrystals, composites, na ihe ndị nwere njirimara dịgasịiche.
  • Bragg Coherent diffraction imaging (BCDI):BCDI bụ usoro microscopy dị elu nke e webatara na 2006 iji mụọ ọdịdị 3D nke crystalline nanomaterials. [29][30] [31] ngwa n'ebe dị iche iche, gụnyere ọmụmụ ihe nke corrosion, nyocha usoro mbibi, na ịme ihe ngosi diffraction iji ghọta mgbanwe atọm. [1]
  • Ptychography bụ usoro ihe oyiyi nke a na-eji na microscopy iji mepụta ihe oyiyi site na ịhazi ọtụtụ usoro mgbochi. [32][33] na-enye uru dị ka foto dị elu, ịchọta oge, na ikike foto na-enweghị anya. [1] [2] [3]
  • Diffraction contrast X-ray (DCT): DCT bụ usoro nke na-eji X-rays kwekọrọ ekwekọ iji mepụta map ọka atọ nke ihe polycrystalline. [34] [35]-eme ka a hụ ihe ọmụma crystallographic n'ime ihe nlele, na-enyere aka na nyocha nke ihe ndị ahụ, nkwarụ, na ntụziaka ọka. [1] [2]
  • Mpịakọta X-ray atọ (3DXRD): 3DXRRD bụ usoro synchrotron nke na-enye ozi gbasara nhazi crystallographic nke mkpụrụ nke ọ bụla na ihe polycrystalline. Enwere ike iji [36] mee ihe iji mụọ evolushọn nke microstructure n'oge usoro deformation na recrystallization ma nye mkpebi submicron.
  • [37]Electron backscatter diffraction (EBSD): EBSD bụ usoro nyocha electron microscopy (SEM) nke enwere ike iji mee map - elu ihe nlele - nhazi crystallographic na nrụgide [1] na submicron scale. [38] na-arụ ọrụ site na ịchọpụta usoro diffraction nke electrons na-agbasa azụ, nke na-enye ozi gbasara ọdịdị kristal nke ihe ahụ. [39][40] ike iji EBSD mee ihe n'ọtụtụ ihe, gụnyere ọla, ceramics, na semiconductors, ma nwee ike ịgbatị ya na akụkụ nke atọ, ya bụ, 3D EBSD, [1] ma nwee ike ijikọta ya na njikọ ihe oyiyi dijitalụ, ya bụ., EBSD-DIC. [2]
  • Digital image correlation (DIC): DIC bụ usoro anya na-abụghị kọntaktị nke a na-eji atụle mgbanwe na nkwarụ nke ihe site na nyochaa ihe oyiyi dijitalụ e jidere tupu na mgbe etinyechara ibu. Usoro [41] nwere ike ịlele nrụgide na sub-pixel ziri ezi ma jiri ya mee ihe n'ọtụtụ ebe na sayensị na injinia.
  • Transmission electron microscopy (TEM): TEM bụ usoro ihe oyiyi dị elu nke na-enye ozi gbasara microstructure na nhazi crystallographic nke ihe. Enwere ike iji [42] mee ihe iji mụọ evolushọn nke microstructure n'oge usoro deformation na recrystallization ma nye mkpebi submicron.
  • Micro-Raman spectroscopy: Micro-Rman spectroscope bụ usoro na-adịghị ebibi ihe nke enwere ike iji tụọ nrụgide nke ihe na submicron scale. Ọ na-arụ ọrụ site na iji ọkụ laser na-enwu na ihe nlele ma na-enyocha ìhè ahụ gbasasịrị. Mgbanwe ugboro nke ìhè ahụ gbasasịrị [43]-enye ozi gbasara nkwarụ kristal, ya mere, nrụgide nke ihe ahụ.
  • Neutron diffraction: Neutron difraction bụ usoro nke na-eji ụzarị neutrons iji mụọ ọdịdị nke ihe. Ọ bara uru karịsịa maka ịmụ ọdịdị kristal na njirimara magnetik nke ihe. diffraction nwere ike inye sub-micron resolution.

Edensibia

[dezie | dezie ebe o si]
  1. Simons (2018-08-01). "Multi-Scale 3D Imaging of Strain and Structure with Dark-Field X-Ray Microscopy". Microscopy and Microanalysis 24 (S2): 72–75. DOI:10.1017/s1431927618012758. ISSN 1431-9276. 
  2. Pfauntsch (1996-02-15). "Toroidal condenser optics for dark-field X-ray microscopy" (in en). Optics Communications 124 (1): 141–149. DOI:10.1016/0030-4018(95)00672-9. ISSN 0030-4018. 
  3. Chapman (1994-12-01). "Imaging of 30 nm gold spheres by dark-field scanning transmission x-ray microscopy: Proceedings of the 52nd Annual Meeting of the Microscopy Society of America". Proceedings - Annual Meeting, Microscopy Society of America: 52–53. DOI:10.1017/S0424820100167998. 
  4. Chapman (31 July 2003). "Dark-Field X-Ray Microscopy of Immunogold-Labeled Cells". Microscopy and Microanalysis 2 (2): 53–62. DOI:10.1017/S1431927696210530. 
  5. Vogt (2001-03-01). "Dark field X-ray microscopy: the effects of condenser/detector aperture" (in en). Ultramicroscopy 87 (1): 25–44. DOI:10.1016/S0304-3991(00)00065-6. ISSN 0304-3991. PMID 11310539. 
  6. Simons (2016-06-01). "Multiscale 3D characterization with dark-field x-ray microscopy" (in en). MRS Bulletin 41 (6): 454–459. DOI:10.1557/mrs.2016.114. ISSN 1938-1425. 
  7. Ando (November 2020). "X-ray dark-field phase-contrast imaging: Origins of the concept to practical implementation and applications". Physica Medica 79: 188–208. DOI:10.1016/j.ejmp.2020.11.034. ISSN 1724-191X. PMID 33342666. 
  8. Vaughan (2011-03-01). "X-ray transfocators: focusing devices based on compound refractive lenses" (in en). Journal of Synchrotron Radiation 18 (2): 125–133. DOI:10.1107/S0909049510044365. ISSN 0909-0495. PMID 21335897. 
  9. Snigirev (November 1996). "A compound refractive lens for focusing high-energy X-rays" (in en). Nature 384 (6604): 49–51. DOI:10.1038/384049a0. ISSN 1476-4687. 
  10. 10.0 10.1 10.2 10.3 10.4 Dresselhaus-Marais (2023). "Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers". Scientific Reports 13 (1). DOI:10.1038/s41598-023-35526-5. PMID 37845245. 
  11. Ludwig (2001-10-01). "Three-dimensional imaging of crystal defects by 'topo-tomography'" (in en). Journal of Applied Crystallography 34 (5): 602–607. DOI:10.1107/S002188980101086X. ISSN 0021-8898. 
  12. ID06 - Hard X-ray Microscope (en). www.esrf.fr. Archived from the original on 2023-04-20. Retrieved on 2023-04-20.
  13. Kutsal (2019-08-01). "The ESRF dark-field x-ray microscope at ID06". IOP Conference Series: Materials Science and Engineering 580 (1): 012007. DOI:10.1088/1757-899x/580/1/012007. ISSN 1757-8981. 
  14. Simons (2018-09-01). "Long-range symmetry breaking in embedded ferroelectrics" (in en). Nature Materials 17 (9): 814–819. DOI:10.1038/s41563-018-0116-3. ISSN 1476-4660. PMID 29941920. 
  15. 15.0 15.1 Yildirim (2020-04-01). "Probing nanoscale structure and strain by dark-field x-ray microscopy" (in en). MRS Bulletin 45 (4): 277–282. DOI:10.1557/mrs.2020.89. ISSN 0883-7694. 
  16. Chen (2023-09-01). "High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy" (in en). Scripta Materialia 234: 115579. DOI:10.1016/j.scriptamat.2023.115579. ISSN 1359-6462. 
  17. Bucsek (2019-10-15). "Sub-surface measurements of the austenite microstructure in response to martensitic phase transformation" (in en). Acta Materialia 179: 273–286. DOI:10.1016/j.actamat.2019.08.036. ISSN 1359-6454. 
  18. Carlsen (2022). Phase Resolved Dark-Field X-ray Microscopy. Department of Physics, Technical University of Denmark. 
  19. Yildirim (2021-05-01). "3D mapping of orientation variation and local residual stress within individual grains of pearlitic steel using synchrotron dark field X-ray microscopy" (in en). Scripta Materialia 197: 113783. DOI:10.1016/j.scriptamat.2021.113783. ISSN 1359-6462. 
  20. Hlushko (2020-10-01). "Dark-field X-ray microscopy reveals mosaicity and strain gradients across sub-surface TiC and TiN particles in steel matrix composites" (in en). Scripta Materialia 187: 402–406. DOI:10.1016/j.scriptamat.2020.06.053. ISSN 1359-6462. 
  21. Huang (2023-02-28). "Automatic Determination of the Weak-Beam Condition in Dark Field X-ray Microscopy". Integrating Materials and Manufacturing Innovation 12 (2): 83–91. DOI:10.1007/s40192-023-00295-6. 
  22. Jakobsen (2019-02-01). "Mapping of individual dislocations with dark-field X-ray microscopy" (in en). Journal of Applied Crystallography 52 (1): 122–132. DOI:10.1107/S1600576718017302. ISSN 1600-5767. 
  23. Ahl (2015-08-07). "Dark field X-ray microscopy for studies of recrystallization". IOP Conference Series: Materials Science and Engineering 89 (1): 012016. DOI:10.1088/1757-899X/89/1/012016. ISSN 1757-8981. 
  24. Yildirim (2020-06-12). "Radiation furnace for synchrotron dark-field x-ray microscopy experiments". Review of Scientific Instruments 91 (65109). DOI:10.1063/1.5141139. PMID 32611059. 
  25. Ormstrup (2020-06-03). "Imaging microstructural dynamics and strain fields in electro-active materials in situ with dark field x-ray microscopy". Review of Scientific Instruments 91 (65103). DOI:10.1063/1.5142319. PMID 32611058. 
  26. Cook (2018). "Insights into the Exceptional Crystallographic Order of Biominerals Using Dark-Field X-ray Microscopy". Microscopy and Microanalysis 24 (S2): 88–89. DOI:10.1017/S1431927618012837. 
  27. Yang (2004-08-01). "Differential-aperture X-ray structural microscopy: a submicron-resolution three-dimensional probe of local microstructure and strain" (in en). Micron 35 (6): 431–439. DOI:10.1016/j.micron.2004.02.004. ISSN 0968-4328. PMID 15120127. 
  28. Larson (February 2002). "Three-dimensional X-ray structural microscopy with submicrometre resolution" (in en). Nature 415 (6874): 887–890. DOI:10.1038/415887a. ISSN 1476-4687. PMID 11859363. 
  29. Yang (2022-10-01). "Refinements for Bragg coherent X-ray diffraction imaging: electron backscatter diffraction alignment and strain field computation". Journal of Applied Crystallography 55 (5): 1184–1195. DOI:10.1107/S1600576722007646. ISSN 1600-5767. PMID 36249491. 
  30. Vicente (2021-04-27). "Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis" (in en). ACS Nano 15 (4): 6129–6146. DOI:10.1021/acsnano.1c01080. ISSN 1936-0851. PMID 33793205. 
  31. Hofmann (2020-01-14). "Nanoscale imaging of the full strain tensor of specific dislocations extracted from a bulk sample". Physical Review Materials 4 (1): 013801. DOI:10.1103/PhysRevMaterials.4.013801. 
  32. Zheng (March 2021). "Concept, implementations and applications of Fourier ptychography" (in en). Nature Reviews Physics 3 (3): 207–223. DOI:10.1038/s42254-021-00280-y. ISSN 2522-5820. 
  33. Ptychography - - Diamond Light Source. www.diamond.ac.uk. Retrieved on 2023-08-17.
  34. Reischig (2013). "Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials" (in en). Journal of Applied Crystallography 46 (2): 297. DOI:10.1107/S0021889813002604. 
  35. Diffraction Contrast Tomography (DCT) (en). www.esrf.fr. Retrieved on 2023-08-17.
  36. Poulsen (2001). "Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders". Journal of Applied Crystallography 34 (6): 751–756. DOI:10.1107/s0021889801014273. 
  37. Koko (2023-06-01). "An iterative method for reference pattern selection in high-resolution electron backscatter diffraction (HR-EBSD)" (in en). Ultramicroscopy 248: 113705. DOI:10.1016/j.ultramic.2023.113705. ISSN 0304-3991. PMID 36871367. 
  38. (2009) in Schwartz: Electron Backscatter Diffraction in Materials Science (in en). DOI:10.1007/978-0-387-88136-2. ISBN 978-0-387-88135-5. 
  39. Stinville (2020-03-01). "Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation" (in en). Acta Materialia 186: 172–189. DOI:10.1016/j.actamat.2019.12.009. ISSN 1359-6454. 
  40. Lin (2010-11-01). "3D EBSD characterization of deformation structures in commercial purity aluminum" (in en). Materials Characterization 61 (11): 1203–1210. DOI:10.1016/j.matchar.2010.07.013. ISSN 1044-5803. 
  41. Zhao (2020-01-13). "Analysis of the formation of sub-grain boundaries in commercially pure titanium compressed at elevated temperature" (in en). Materials Science and Engineering: A 771: 138680. DOI:10.1016/j.msea.2019.138680. ISSN 0921-5093. 
  42. Kirkland, E (1998). Advanced computing in Electron Microscopy. Springer. ISBN 978-0-306-45936-8. 
  43. Li (2020-04-14). "Localized Strain Measurement in Molecular Beam Epitaxially Grown Chalcogenide Thin Films by Micro-Raman Spectroscopy" (in en). ACS Omega 5 (14): 8090–8096. DOI:10.1021/acsomega.0c00224. ISSN 2470-1343. PMID 32309718.