Nlele nke mmetọ ikuku
[1] na-atụle carbon monoxide () na carbon dioxide (CO2) site na infrared na-adịghị agbasa agbasa (NDIR) na-amịkọrọ ìhè dabere na Iwu Beer-Lambert. [2] pụkwara ịlele CO site na iji ihe mmetụta gel electrochemical na ihe nchọpụta semiconductor metal-oxide (MOS). [1]
Ozone
[dezie | dezie ebe o si][3] na-atụle ozone (O3) site n'ịhụ oke ìhè nke ikuku ikuku na-amị. Ọnụ ọgụgụ dị elu nke ozone na-amịkwu ìhè dịka iwu Beer-Lambert si dị.
Ihe ndị na-eme ka mmiri na-efe efe (VOCs)
[dezie | dezie ebe o si]A na-atụle ndị a site na iji gas chromatography na flame ionization (GC-FID). [4]
Hydrocarbon
[dezie | dezie ebe o si][5][6] ike ịlele Hydrocarbon site na gas chromatography na flame ionization detectors. A na-egosipụta ha mgbe ụfọdụ dị ka ọnụọgụ dị iche iche nke methane (CH4), NMHC (hydrocarbons na-abụghị methane), na THC (ngụkọta hydrocarbon) (ebe THC bụ ngụkọta nke CH4 na NMHC). [6]
Ammoniya
[dezie | dezie ebe o si][7] ike ịlele Ammoniya (NH3) site na ụzọ dị iche iche gụnyere chemiluminescence.
Ihe ndị e ji atụ ihe ndị e kere eke
[dezie | dezie ebe o si]A pụkwara inyocha mmetọ ikuku n'ụzọ dị mma site n'ịhụ mmetụta nke ikuku mmetọ na osisi ndị na-eto eto dị ka lichens na mosses (ihe atụ nke Biomonitoring).[8][9][10] Ụfọdụ ọrụ s[11] ejirila osisi ndị a na-akụ n'ụzọ pụrụ iche dịka strawberries.
Ihe ndị a na-atụle
[dezie | dezie ebe o si]A na-egosipụtakarị ọnụọgụ nke mmetọ dị na ikuku dị ka ọnụ ọgụgụ, nke a na-atụle n'akụkụ ọ bụla (na-abụkarị akụkụ ọ bụla na ijeri, ppb, ma ọ bụ akụkụ ọ bụla, ppm, nke a makwaara dị ka ọnụego ngwakọta), ma ọ bụ micrograms kwa cubic mita (μg / m3). [12] dịtụ mfe ịgbanwe otu n'ime nkeji ndị a n'ime nke ọzọ, na-eburu n'uche ịdị arọ dị iche iche nke gas dị iche iche na okpomọkụ na nrụgide ha.
Ngalaba ndị a na-egosipụta oke mmetọ ikuku n'ihe gbasara oke ma ọ bụ oke nke mmetọ ahụ, a na-ejikarị ha eme ihe maka ịtụle mmetọ gas abụọ, dị ka nitrogen dioxide, na ihe siri ike (PM10) na obere (PM2.5). Nlele ọzọ maka ụmụ irighiri ihe, ọnụọgụ ụmụ irighari, na-egosipụta nkenke n'ihe gbasara ọnụ ọgụgụ ụmụ irighri kwa ikuku kama, nke nwere ike ịbụ ụzọ bara uru iji nyochaa mmerụ ahụike nke ụmụ irigheri ihe na-egbu egbu (PM0.1, ihe na-erughị 0.1 μm n'obosara).[13][14] [15] ike iji ngwá ọrụ [16] ka condensation particle counters tụọ ọnụọgụ nke ụmụ irighiri ihe.
A na-agbakọ ụkpụrụ nke ikuku n'obodo (AQI) site na ijikọta ma ọ bụ jiri ọnụ ọgụgụ nke "ikuku" nke mmetọ ikuku nkịtị (nke a na-ahụkarị ozone, carbon monoxide, sulphur dioxide, nitrogen oxides, na ma nke dị mma na nke siri ike) iji mepụta otu ọnụ ọgụgụ dị mfe nghọta (ma na-enwekarị akara). [17]
Akụkọ ihe mere eme
[dezie | dezie ebe o si]A tụrụ mmetọ ikuku nke mbụ, na Britain, na narị afọ nke iri na itoolu. N'afọ 1852, onye na-emepụta kemịkalụ na Scotland bụ Robert Angus Smith chọpụtara (ma kpọọ aha) Mmiri ozuzo acid mgbe ọ chịkọtara mmiri ozuzo nke nwere nnukwu sulphur site na ọkụ coal. Dabere na usoro iheomume nke mmetọ ikuku nke David Fowler na ndị ọrụ ibe ya, Smith bụ "onye ọkà mmụta sayensị mbụ nwara multisite, nyocha mmetọ nke kemịkalụ nke ikuku mmetọ". [18]
Na mbido narị afọ nke 20, onye dọkịta Irish na onye injinia gburugburu ebe obibi John Switzer Owens na Kọmitii maka nyocha nke mmetọ ikuku, nke ọ bụ odeakwụkwọ ya, gara n'ihu n'ịtụle na nlekota nke mmetụ ikuku site na iji netwọk nke ihe nyocha. [19] mepụtara ọtụtụ ụzọ ọhụrụ iji tụọ mmetọ.
Na Disemba 1952, Nnukwu anwụrụ ọkụ nke London kpatara ọnwụ nke mmadụ 12,000. [20] Ihe omume [21], na ndị yiri ya dị ka ọdachi anwụrụ ọkụ Donora nke 1948 na United States, [1] ghọrọ otu n'ime nnukwu mgbanwe na akụkọ ihe mere eme gburugburu ebe obibi n'ihi na ha wetara echiche dị egwu na nchịkwa mmetọ. [22] UK, nnukwu anwụrụ ọkụ nke London na-eduga kpọmkwem na Iwu Mmiri Dị Ọcha, nke nwere ike inwe mmetụta dị ukwuu karịa ka ọ bu n'obi na mbụ. Ihe omume ọdachi [18] ka nke a mere ka a tụọ ma chịkwaa mmetọ nke ọma.
Hụkwa
[dezie | dezie ebe o si]Ihe odide
[dezie | dezie ebe o si]- ↑ Jha (23 November 2021). "Non-Dispersive Infrared Gas Sensing Technology: A Review". IEEE Sensors Journal 22 (1): 6–15. DOI:10.1109/JSEN.2021.3130034. Retrieved on 29 March 2022.
- ↑ Fine (2010). "Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring". Sensors 10 (6): 5469–5502. DOI:10.3390/s100605469. PMID 22219672.
- ↑ How We Measure Ozone. National Park Service. US Department of the Interior. Retrieved on 30 March 2022.
- ↑ Srivastava (2011). "7: Monitoring and reporting VOCs in ambient air", in Mazzeo: Air Quality Monitoring, Assessment and Management. Rijeka, Croatia: InTech Open, 137–148. ISBN 978-9533073170. Retrieved on 30 March 2022.
- ↑ Morris (1961). "Flame lonization Hydrocarbon Analyzer". Journal of the Air Pollution Control Association 11 (10): 467–489. DOI:10.1080/00022470.1961.10468025.
- ↑ 6.0 6.1 (16 December 2015) Hydrocarbons (THC, CH4 and NMHC). Alberta, Canada: Alberta Government. ISBN 9781460118047. Retrieved on 7 April 2022.
- ↑ Baumgardner (February 1979). Optimized Chemiluminescence System for Measuring Atmospheric Ammonia: EPA-600 2-79-028. Research Triangle Park, NC: US Environmental Protection Agency. Retrieved on 30 March 2022.
- ↑ Conti (2001). "Biological monitoring: lichens as bioindicators of air pollution assessment - a review". Environ Pollut 114 (3): 471–92. DOI:10.1016/s0269-7491(00)00224-4. PMID 11584645. Retrieved on 30 March 2022.
- ↑ Impacts of air pollution on Lichens and Bryophytes (mosses and liverworts). Air Pollution Information System. Centre for Ecology and Hydrology. Retrieved on 30 March 2022.
- ↑ Ndlovu (10 July 2015). Mosses and lichens come to the rescue in battle against air pollution. The Conversation. Retrieved on 27 March 2022.
- ↑ StrawbAIRies. University of Antwerp. Archived from the original on 10 April 2022. Retrieved on 27 March 2022.
- ↑ Unit Conversion. Air Pollution Information System (APIS). UK Centre for Ecology & Hydrology. Retrieved on 27 January 2023.
- ↑ Whitty (8 December 2022). Chief Medical Officer's Annual Report 2022: Air pollution. London: UK Government, Department of Health and Social Care. Retrieved on 25 January 2023.
- ↑ Ohlwein (21 February 2019). "Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence". International Journal of Public Health 64 (4): 547–559. DOI:10.1007/s00038-019-01202-7. ISSN 1661-8556. PMID 30790006.
- ↑ Air Quality Expert Group (2005). "5: Methods for monitoring particulate concentrations", Particulate Matter in the United Kingdom. London: Department for the Environment, Food and Rural Affairs. ISBN 0855211431. Retrieved on 30 June 2023.
- ↑ Condensation particle counters. Center for Atmospheric Science. University of Manchester. Retrieved on 29 June 2023.
- ↑ Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI): EPA 454/B-18-007. US Environmental Protection Agency: Office of Air Quality Planning and Standards. Archived from the original on 10 September 2021. Retrieved on 26 January 2023.
- ↑ 18.0 18.1 Fowler (30 October 2020). "A chronology of global air quality". Phil. Trans. R. Soc. A 378 (2183). DOI:10.1098/rsta.2019.0314. PMID 32981430. Fowler, David; Brimblecombe, Peter; Burrows, John; Heal, Mathew; Grennfelt, Peringe; et al. (30 October 2020). "A chronology of global air quality". Phil. Trans. R. Soc. A. 378 (2183). Bibcode:2020RSPTA.37890314F. doi:10.1098/rsta.2019.0314. PMC 7536029. PMID 32981430.
- ↑ Fuller. "Pollutionwatch: how lessons from 1920s were forgotten for 50 years", The Guardian, 13 August 2020. Retrieved on 17 January 2022.
- ↑ Bell, M.L. (2004). "A Retrospective Assessment of Mortality from the London Smog Episode of 1952: The Role of Influenza and Pollution". Environ Health Perspect 112 (1; January): 6–8. DOI:10.1289/ehp.6539. PMID 14698923.
- ↑ Gorney. "Decades ago, this pollution disaster exposed the perils of dirty air", National Geographic, 27 October 2020. Retrieved on 28 March 2022.
- ↑ Brimblecombe (2006-11-01). "The Clean Air Act after 50 years" (in en). Weather 61 (11): 311–314. DOI:10.1256/wea.127.06. ISSN 1477-8696.